Archiv der Kategorie: Hacking

Ripple20-Schwachstellen gefährden Millionen von IoT-Geräten

Die israelische Sicherheitsfirma JSOF hat Informationen zu einer Reihe von Schwachstellen veröffentlicht, die sie Ripple20 nennt. Diese Schwachstellen haben das Potenzial, Millionen von Internet of Things (IoT)-Geräten in vielen verschiedenen Branchen zu schädigen. Wichtige Systeme in der Gesundheits-, Öl- und Gasindustrie, im Transportwesen, in der Energiewirtschaft und im verarbeitenden Gewerbe können von diesen Fehlern betroffen sein. Eine Liste bestimmter Hersteller mit anfälligen Geräten ist in dem technischen Bericht von JSOF zu finden.

Die Schwachstellen stammen von einer Software, die von der amerikanischen Firma Treck Inc. entwickelt und Ende der neunziger Jahre auf den Markt gebracht wurde. Die Software beinhaltet einen leichtgewichtigen TCP/IP-Stack und ermöglicht es Unternehmen, ihre Geräte oder Software über TCP/IP-Verbindungen mit dem Internet zu verbinden.

Angesichts der Tatsache, dass diese Software bereits seit vielen Jahren verfügbar und im Einsatz ist und Unternehmen aller Grössenordnungen immer mehr Geräte online bringen, ist es nicht verwunderlich, dass die Auswirkungen von Ripple20 so breit gestreut sind. Die betroffenen Firmen reichen von Ein-Personen- bis hin zu multinationalen Fortune-500-Unternehmen.

IoT- und industrielle Internet of Things (IIoT)-Geräte benötigen leichtgewichtige Netzwerkkomponenten, um Rechenleistung zu sparen. Aber Probleme mit Netzwerk-Kommunikationssoftware von Drittanbietern belasten die Landschaft seit Jahren. Im Jahr 2018 gefährdeten 13 Fehler im FreeRTOS-TCP/IP-Stack die IoT-Geräte in Privathaushalten und in kritischen Infrastrukturen, und 2019 wurden medizinische Geräte und Krankenhausnetzwerke durch eine Reihe von elf Schwachstellen namens Urgent/11 bedroht. Die Schwachstellen befanden sich im IPnet, einer Softwarekomponente eines Drittanbieters, die die Netzwerkkommunikation unterstützt. Ein Angreifer könnte diese Schwachstellen potenziell nutzen, um die Kontrolle über medizinische Geräte aus der Ferne zu übernehmen oder deren Funktionsfähigkeit zu behindern.

Die Schwachstellen

Die in der Software gefundenen Schwachstellen zeichnen sich durch die Breite ihrer Auswirkungen aus – die Software hat sich über die ganze Welt verbreitet und wurde direkt und indirekt von vielen verschiedenen Herstellern verwendet.

Konkret handelt es sich bei Ripple20 um eine Gruppe von 19 Fehlern, die bei erfolgreicher Ausnutzung einem Angreifer erlauben würden, willkürlich Code auf anfälligen Geräten auszuführen, mit denen er sich verbinden kann. Hacker können über lokale Netzwerke oder über das Internet auf anfällige Geräte zugreifen und die vollständige Kontrolle über diese Geräte übernehmen – ein kritisches Problem, wenn es sich dabei auch um solche in Stromnetzen, Produktionsstätten und Krankenhäusern handelt.

Einer dieser Bugs ist eine Schwachstelle im DNS-Protokoll, die von einem erfahrenen Hacker dazu benutzt werden kann, Geräte anzugreifen, die nicht mit dem Internet verbunden sind. JSOF hat weitere mögliche Angriffe skizziert, unter anderem die Nutzung angreifbarer Geräte, um andere Geräte in einem Netzwerk ins Visier zu nehmen oder um im Netzwerk verborgen zu bleiben, und die Verbreitung eines Angriffs, um die Kontrolle über alle betroffenen Geräte im Netzwerk gleichzeitig zu übernehmen. Treck hat ein Sicherheits-Update zur Behebung dieser Schwachstellen veröffentlicht.

Die Cybersecurity and Infrastructure Security Agency (CISA) hat fünf dieser Schwachstellen mit über acht bewertet, wobei zwei davon eine zehn erhielten (die höchste mögliche Bewertung). Sie empfehlen Benutzern auch, „Abwehrmassnahmen“ gegen diese Schwachstellen zu ergreifen – Installation der Updates von Treck, Minimierung der Exponierung des Netzwerks, Einsatz von Firewalls, Verwendung virtueller privater Netzwerke und interner DNS-Server.

Eindämmung und Lösungen

Entdeckung ist der erste Schritt zur Vermeidung von Angriffen, die diese Schwachstellen missbrauchen. In einigen Fällen sind sich die Eigentümer von Assets möglicherweise nicht bewusst, dass diese Schwachstellen in ihrer Umgebung existieren. Produkte wie EdgeIPSTM und EdgeFireTM können beim Entdecken von Ripple20-Schwachstellen unterstützen, indem sie den Netzwerkverkehr scannen.

Es gibt auch einige andere Taktiken, die bei der Eindämmung von Ripple20 helfen können:

  • Netzwerksegmentierung: Eine angemessene interne Segmentierung und Mikrosegmentierung sollte in der OT-Netzwerkumgebung durchgeführt werden. Verantwortliche können EdgeFireTM für die interne Segmentierung durch kommunikationsgesteuerte NAT- und ICS-Protokolle verwenden. EdgeIPSTM kann eine tiefgreifende Mikrosegmentierung durchführen.
  • Netzwerk-Policy für die Kontrolle: Ohne eine angemessene Lösung kann das Prinzip des Null-Vertrauens nicht erreicht werden. EdgeFireTM und EdgeIPSTM bieten Netzwerkzugriffs-Whitelists für M2M-Kommunikation über IP-Adressen, ICS-Protokolle und Befehle.
  • Vorbeugung: Bei Gefahren mit hohem Potenzial aktualisieren EdgeIPSTM und EdgeFireTM den 6/30-Regelsatz, um Schwachstellen zu verhindern.

Der Originalbeitrag beinhaltet auch die Indicators of Compromise und eine Auflistung der Ripple20-Schwachstellen.

PowerShell-basierte Malware und Angriffe aufspüren, erkennen und vereiteln

Während herkömmliche Malware und Angriffe auf eigens erstellte ausführbare Dateien angewiesen sind, liegt dateilose Malware im Speicher, um herkömmlichen Scannern und Erkennungsmethoden zu entgehen. PowerShell, ein legitimes Verwaltungstool für Systemadministratoren bietet eine ideale Tarnung für Bedrohungsakteure, bei der Erstellung von Payloads, die stark von einer tiefen Windows-Integration abhängen. Trend Micro hat mehrere Berichte über dieses Methoden veröffentlicht, dessen Verbreitung durch Telemetriedaten weiter validiert wurde.

PowerShell ist eine Skripting-Sprache und eine Befehlszeilen-Shell auf Basis von .NET-Klassen. Sie unterstützt Systemadmins dabei, Aufgaben im Management von Betriebssystemen zu automatisieren. PowerShell ermöglicht einen einfacheren und schnelleren Zugriff auf das Betriebssystem, sodass Administratoren sowohl lokal als auch aus der Ferne Managementaufgaben für ein System wahrnehmen können.

PowerShell als effizienter Angriffsvektor

Mit Viren infizierte Dateien und bösartige Trojaner sind etablierte Malware-Typen, und die Entwickler verfügen über verschiedene defensive Erkennungs- und Abwehrtechniken, um sich dagegen zu wehren. Browser überprüfen heruntergeladene Dateien, Anwendungen benötigen vor der Installation genehmigte Berechtigungen, und Sicherheitssoftware kann Dateien scannen, um sie auf bekannte Signaturen zu überprüfen. Sogar Malware, die über Microsoft Office-Makros kommt, wird durch Standardeinstellungen blockiert, die eine automatische Ausführung nicht mehr zulassen.

Angreifer können dateilose Malware verwenden, um diese Schutzmechanismen zu umgehen, indem sie Payloads in laufende Anwendungen einschleusen oder Skripting einsetzen. PowerShell ist ein idealer Kanal für die Durchführung dieser Angriffe, da die Shell weit verbreitet ist und über das .NET-Framework auf alle Teile eines Hosts zugreifen kann. Darüber hinaus ist es einfach, Skripts zu entwickeln für die Übermittlung von Payloads, und weil PowerShell eine vertrauenswürdige Anwendung ist, kann sie fast immer Skripts ungehindert ausführen.

Bekannte Angriffe und Infektionen mithilfe von PowerShell

Die Ressourcen für die Verwendung und den Missbrauch von PowerShell sind online einfach verfügbar, so dass böswillige Akteure mit mehr oder weniger raffinierten Methoden darauf zurückgreifen. Seit den ersten Berichten 2014 haben Cyberkriminelle verschiedene Kampagnen durchgeführt und dabei zur Infektion der Systeme Techniken des Social Engineering eingesetzt. Sie kombinierten PowerShell mit anderen Exploits oder replizierten offenbar andere Routinen.

Eine der berüchtigten Kompromittierungen über PowerShell stand im Zusammenhang mit der Veröffentlichung interner Emails des US-Demokratischen Nationalkomitees durch die mutmasslich russische Gruppe Pawn Storm im Jahr 2016. Der Equifax-Diebstahl 2017 zeigte deutlich das Ausmass des Schadens, den böswillige Akteure verursachen können, wenn sie PowerShell für den Missbrauch einer nicht gepatchten Schwachstelle nutzen. 2018 verschickte eine weitere Cyberspionagegruppe APT33 Spear Phishing-Mails an Ziele in der Luftfahrt- und Ölindustrie. Die Anhänge führten einen PowerShell-Befehl aus, der Malware herunterlud und Persistenz im Netzwerk des Opfers herstellte.

Eindämmung und Best Practices

Administratoren können lernen, Aktivitäten zu verfolgen, die enttarnten Events und Payloads zu finden, sie zu überwachen und sich mit ihrem Verhalten vertraut zu machen. PowerShell bietet viele Möglichkeiten zur Aktivitätsprotokollierung. Diese Funktionen lassen sich auch dafür nutzen, den Missbrauch dieses Tools zu erkennen, sich dagegen zu wappnen und die Wirkung zu entschärfen. Diese Protokollierungsfunktionen werden über die Active Directory Group Policy für eine unternehmensweite Implementierung aktiviert. Einzelheiten zu der Handhabung der Funktionen finden Interessierte im Originalbeitrag.

Bei Einbrüchen im Zusammenhang mit PowerShell bedarf es einer hohen Anzahl von Ereignissen, um den für die Analyse von Sicherheitsvorfällen erforderlichen Detaillierungsgrad zu erreichen. In einigen Fällen kann ein einzelner PowerShell-Befehl (Cmdlet) über 30 Events erzeugen. Ein Angriff kann grössere Befehle mit Skriptblöcken und Ausführungen beinhalten, die Ereignisse erzeugen, die jeden Sicherheitsanalysten überfordern können.

Bild 1. Beispiel eines PowerShell-Ereignisprotokolls

Das Log Inspection-Modul in Trend Micro™ Deep Security™ kann verschiedene Betriebssystem- und Anwendungs-Logs über die verschiedenen Hosts und Anwendungen im Netzwerk sammeln, analysieren und anreichern. Es ermöglicht die Korrelation zwischen ihnen, um bei der Aufdeckung von Problemen zu helfen. Auch gibt es von Trend Micro die Rule 1010002 – Microsoft PowerShell Command Execution, die der Analyse aller PowerShell-Ereignisse gewidmet ist.

Bedrohungsakteure versuchen auch immer wieder, PowerShell-Befehle zu verschleiern, indem sie sie codieren. Diese lassen sich jedoch aus den generierten Event decodieren, und die PowerShell Log Inspection-Regel entdeckt und charakterisiert das Event entsprechend.

MITRE ATT&CK

Das MITRE ATT&CK-Framework stellt ein unschätzbares Tool für Cybersicherheitsforscher dar. Durch die umfangreiche Datensammlung und Forschung dient das Framework als Verifizierungsmassnahme zur Bewertung von Techniken, die von den böswilligen Gruppen eingesetzt werden, sowie zur Verfolgung der dokumentierten Entwicklungen der Gruppen. PowerShell-Events, die von Deep Security generiert werden, helfen bei der Angriffsanalyse, indem sie eine Klassifizierung gemäss den entsprechenden ATT&CK-Techniken, die durch das Framework definiert sind, zugewiesen bekommen. Die Trend Micro PowerShell-Regel wurde anhand der MITRE 2019 APT 29 Evaluation geprüft und deckt eine grosse Anzahl der Kriterien ab.

Bild 2. Angebotene MITRE ATT&CK Techniken

Fazit

Die Bequemlichkeit, die das PowerShell-Framework bietet, erleichtert zwar die Aufgaben der Systemadministratoren, bietet aber Cyberkriminellen eine grosse Angriffsfläche. Der Missbrauch legitimer Tools und Funktionen wie PowerShell ist nicht neu, aber er wird sich als cyberkriminelle Taktik in Kombination mit anderen Techniken weiter entwickeln. Dateilose Bedrohungen über PowerShell sind zwar nicht so sichtbar wie herkömmliche Malware und Angriffe, aber sie lassen sich verhindern. Zu allen Themen liefert der Originalbeitrag weitere Einzelheiten sowie Anleitungen für Systemadministratoren.

Auch „traditionelle“ Best Practices, wie etwa Updaten und Patchen von Systemen, helfen gegen diese Angriffe. Aber die sich weiter entwickelnden Sicherheitstechnologien, die eine generationsübergreifende und vernetzte Verteidigung einsetzen, sowie die Entwicklung einer Kultur der Sicherheit und des Sicherheitsbewusstseins bei den Anwendern ermöglichen es IT-Managern und Administratoren, sich dagegen zu verteidigen.

Trend Micro-Lösungen

Trend Micro™ Deep Security™ kann Systeme und Nutzer vor Malware und Angriffen über PowerShell schützen. Die Lösung bietet Netzwerk- und Systemsicherheit, und in Kombination mit Vulnerability Protection kann die Lösung Nutzersysteme vor einer Vielfalt aufkommender Bedrohungen, die Schwachstellen missbrauchen, schützen.

Smart Protection Suites beinhaltet einige Fähigkeiten wie High-Fidelity Machine Learning und Webreputations-Services, die die Auswirkung von persistenten, dateilosen Bedrohungen minimieren. Trend Micro Apex One™ nutzt eine Vielfalt von Erkennungstechniken sowie Verhaltensanalyse, um gegen bösartige Skripts, Einschleusen, Ransomware, Memory- und Browser-Angriffe zu schützen.

Zusätzlich bietet Apex One Endpoint Sensor kontextspezifische Endpunkt-Erkennung und Reaktion (EDR), die Ereignisse überwacht und Prozesse oder Ereignisse mit böswilligen Aktivitäten schnell untersucht. Trend Micro Deep Discovery umfasst einen Email Inspection-Layer, der bösartige Anhänge und URLs erkennen kann. Die Lösung entdeckt Remote-Skripts, auch wenn diese nicht auf den physischen Endpunkt heruntergeladen werden.

Wie Angreifer Gesichtserkennungsgeräte austricksen

Die Corona-Pandemie hat Unternehmen auf der ganzen Welt vor Fragen gestellt, wie sie die Arbeitsweise ihrer Büros ändern können, um auch im Zeitalter des Social Distancings eine sichere Zusammenarbeit zu gewährleisten. Eine Richtlinie dafür, die von vielen Unternehmen umgesetzt wird, ist die Installation von freihändigen Zugangskontrollen an den Firmeneingängen, um den Kontakt der Mitarbeiter mit unter Umständen kontaminierten Oberflächen zu reduzieren. Natürlich erfordert die Verwaltung der Zugangskontrollen leistungsfähige Werkzeuge, um die Authentifizierung schnell und effizient durchzuführen. Zu diesem Zweck greifen viele Unternehmen auf Edge-Computergeräte zurück.

Edge Computing ist ein relativ neuer Begriff und bedeutet, dass Ressourcen mit höherer Leistung näher an den Geräten am „Rand“ (Edge) des Netzwerks liegen (etwa IP-Kameras, die Bilder für die Zugangskontrolle aufnehmen), um Verzögerungen zu verringern und die Effizienz zu erhöhen. Im Gegensatz dazu sammeln in einem Cloud-orientierten Internet der Dinge (IoT)-System viele stromsparende Geräte am Edge des Netzwerks Daten und schicken sie an eine Cloud-Lösung, die die Daten verarbeitet und Befehle aufsetzt. Edge Computing-Geräte sind bereits in vielen verschiedenen Industriezweigen im Einsatz – Lastwagen sind mit Geräten ausgestattet, die Temperatur und Umgebung überwachen und aufrechterhalten, Automationssysteme in Fabriken beginnen, hochleistungsfähige Geräte einzusetzen, und sogar moderne Aufzüge haben Edge Computing-Lösungen installiert.

Wie sicher sind Zugangskontrollgeräte?

Zugangskontrollgeräte verwalten Ein- und Ausgänge für die Räumlichkeiten eines Unternehmens. Wie bereits erwähnt, suchen viele Unternehmen nach Lösungen für einen kontaktlosen Zutritt, vor allem Edge-Geräte für Gesichtserkennung oder kleine Geräte wie RFID-Karten. Diese Geräte dienen als erste Verteidigungslinie, um Eindringlinge von Büros fernzuhalten, die vielen verschiedenen Arten von Angriffen ausgesetzt sein können.

Doch es gibt verschiedene Möglichkeiten, wie ein Eindringling die Zugangskontrollgeräte mit Gesichtserkennung austricksen oder hacken kann:

Verwendung statischer Bilder. Einige dieser Zugangskontrollgeräte akzeptieren auch statische Aufnahmen, wie etwa ein Bild auf einem Handy. Dies ist eine kritische Schwäche, da persönliche Fotos in sozialen Medien verfügbar sind. Wenn ein Angreifer den Namen eines Mitarbeiters der anvisierten Firma kennt, kann er im Internet möglicherweise klare Fotos von dessen Gesicht finden.

Verwendung von Produktinformationen auf dem Gerät. Auf vielen Geräten sind wichtige Informationen direkt aufgedruckt, zum Beispiel Seriennummern oder Herstellerbezeichnungen. Hacker können diese Informationen nutzen, um sich weiteren Zugang zu den Geräten zu verschaffen, unter Umständen um das Passwort zu stehlen und die Türsteuerung zu manipulieren.

Nutzung exponierter Anschlüsse. Bei Zugangskontrollgeräten handelt es sich häufig um Tablets, die über Anschlüsse für die Übertragung von Informationen oder Strom verfügen. Viele haben solide Gehäuse, die die Geräte vor Eingriffen schützen, aber es gibt einige wenige, bei denen die Anschlüsse ungeschützt sind. Wenn ein USB-Port exponiert bleibt, könnten sich Hacker Zugang zu den Türkontrollen verschaffen. Sie wären auch in der Lage, tiefer in das Gerät einzudringen und Daten wie Bilder und Benutzernamen herunterzuladen oder einen neuen Benutzer zum Gerät hinzuzufügen und ihm Zugang zum Firmengelände zu gewähren.

Kommunikation belauschen. Die meisten Zugangskontrollgeräte werden über einen Server und kundenspezifische Software des Herstellers verbunden und verwaltet. Die Kommunikation zwischen Gerät und Server kann leicht abgefangen und manipuliert werden, wenn sie nicht verschlüsselt oder gesichert ist, so dass ein Bedrohungsakteur Daten wie Bilder und Informationen des Benutzers sammeln kann. Ausserdem kann sich ein Hacker als der Server ausgeben und Aktualisierungen auf den Geräten erzwingen und neue Benutzer hinzufügen oder neue Administratoren für das Gerät installieren.

Gerätesicherheit

Im Vergleich zu gewöhnlichen smarten Geräten sind Edge Computing-Geräte leistungsfähiger und können sogar wertvolle Daten enthalten. Vor allem Zugangskontrollgeräte spielen eine wichtige Rolle für die Unternehmenssicherheit, und ein erfolgreicher Angriff kann schwerwiegende Folgen haben. Um Unternehmen bei der Eindämmung solcher Angriffe zu unterstützen, hat Trend Micro einige Empfehlungen zur Sicherung dieser Geräte:

  • Prüfen, ob Anschlüsse exponiert sind, und darauf achten, dass die Kommunikation sicher abläuft. Die Cybersicherheit muss bei der Wahl eines Zugangskontrollgeräts im Vordergrund stehen.
  • Da viele dieser Geräte mit weit verbreiteter Hard- und Software ausgestattet sind, sollte ein Unternehmen die Schwachstellen, die ihre Geräte betreffen, immer im Griff haben und die neuesten Sicherheitsupdates installieren, sobald diese verfügbar sind.
  • Zugangskontrollgeräte werden normalerweise in öffentlichen Bereichen platziert. Es ist wichtig, das Gerät physisch zu sichern, um sicherzustellen, dass niemand auf Anschlüsse zugreifen oder sensible Informationen sehen kann, die auf dem Gerät aufgedruckt sind.
  • Unternehmen sollten auch Endpoint-Schutz auf Geräten installieren, um sie vor Schwachstellen und Cyberattacken zu schützen. Produkte mit Funktionen für Deep Packet Inspection wie Trend Micro Deep Discovery Inspector™ können verhindern, dass ein Angreifer versucht, sich als das Edge-Gerät oder Server auszugeben. Diese Netzwerk-Monitoring-Systeme können auch nicht autorisierten Netzwerkverkehr von unbekannten Netzwerkendpunkten erkennen und verhindern.

Smart doch angreifbar: Schwachstellen bei IoT-Geräten

Die Vielfalt der Funktionen von smarten Geräten bietet grossen Nutzen für Umgebungen zu Hause, in Unternehmen und im öffentlichen Bereich, doch gleichzeitig sind auch die Sicherheitsrisiken hoch, die sich durch Schwachstellen und Lücken darin ergeben. Angreifbare smarte Geräte setzen die Netzwerke Angriffen aus. IoT-Geräte sind vor allem deshalb gefährdet, weil ihnen die notwendige eingebaute Sicherheit fehlt, um Bedrohungen abzuwehren. Abgesehen von technischen Aspekten tragen aber auch die Nutzer zur Anfälligkeit der Geräte für Bedrohungen bei.

Einige der Gründe, warum diese smarten Geräte angreifbar sind:

  • Begrenzte rechnerische Fähigkeiten und Hardware-Beschränkungen: Die Geräte verfügen über spezifische Funktionen, die nur begrenzte Rechenfähigkeiten erfordern, so dass wenig Raum für robuste Sicherheitsmechanismen und Schutz der Daten bleibt.
  • Heterogene Übertragungstechnologie: Geräte verwenden häufig viele unterschiedliche Übertragungstechniken. Dadurch ist es schwierig, Standard-Schutzmethoden und -Protokolle festzulegen.
  • Angreifbare Komponenten der Geräte: Anfällige Basiskomponenten haben Auswirkungen auf Millionen eingesetzter smarter Geräte.
  • Nutzer mit mangelndem Sicherheitsbewusstsein: Infolge eines mangelhaften Sicherheitsdenken bei den Nutzern können vernetzte Geräte Schwachstellen und Lücken für Angreifer ausgesetzt werden.

Schwachstellen in Geräten ermöglichen es Cyberkriminellen, sie als Ausgangsbasis für ihre Angriffe zu nutzen. Dies hebt nochmals hervor, wie wichtig es ist, Sicherheit bereits in der Entwurfsphase mit einzubinden.

Auswirkungen der Sicherheitslücken auf Nutzer

Die Untersuchung von grösseren Angriffen auf IoT-Geräte zeigt, wie diese sich auf Nutzer auswirken können. Bedrohungsakteure können angreifbare Geräte für laterale Bewegungen nutzen, um so ihre Wunschziele zu erreichen. Auch lassen sich Sicherheitslücken dazu nutzen, um Geräte selbst ins Visier zu nehmen und sie für grössere Kampagnen zu missbrauchen oder um Malware ins Netzwerk zu bringen.

IoT Botnets zeigen die Auswirkungen von Geräte-Schwachstellen und wie Cyberkriminelle diese ausnutzen. 2016 geriet Mirai, eine der bekanntesten Arten von IoT-Botnet-Malware, in die Schlagzeilen, als das Botnet, bestehend aus Tausenden von kompromittierten IoT-Haushaltsgeräten, in einer Distributed Denial of Service (DDoS)-Kampagne namhafte Websites lahmlegte. Aus geschäftlicher Sicht lassen IoT-Geräte die Unterscheidung zwischen der notwendigen Sicherheit in Unternehmen und Privathaushalten weiter schwinden, insbesondere in Home Office-Szenarien. Die Einbindung von IoT-Geräten im Haushalt kann auch neue Einstiegspunkte in Umgebungen mit möglicherweise schwacher Sicherheit eröffnen und Mitarbeiter Malware und Angriffen aussetzen, über die Angreifer ins Unternehmensnetzwerk gelangen können. Dies ist ein wichtiger Aspekt bei der Entscheidung für die Implementierung von Bring Your Own Device (BYOD)– und Home Office-Szenarien.

Angreifer können IoT-Geräte mit bekannten Schwächen ebenso für das Eindringen in interne Netzwerke nutzen. Die Bedrohungen reichen von DNS Rebinding-Attacken, um aus internen Netzwerken Informationen zu sammeln und zu exfiltrieren, bis zu neuen Angriffen über Seitenkanäle wie Infrarotlaser für Attacken auf vernetzte Geräte.

Beispiele für Sicherheitslücken in IoT-Geräten

Es hat bereits viele Fälle gegeben, die die Auswirkungen von IoT-Schwachstellen vor Augen führen, einige davon in der Praxis andere im Rahmen eines Forschungsprojekts. Die Nonprofit-Organisation Open Web Application Security Project (OWASP) veröffentlicht jedes Jahr eine Liste der Top IoT-Schwachstellen. Zu den am weitesten verbreiteten Lücken gehören die folgenden:

  • Schwache, leicht zu erratende oder fest codierte Passwörter: Typischerweise nutzen dies neue Malware-Varianten aus. Beispielsweise fanden die Sicherheitsforscher von Trend Micro eine Mirai-Variante namens Mukashi, die CVE-2020-9054 missbrauchte und Brute Force-Angriffe mit Standard-Anmeldedaten, um sich in Zyxel NAS-Produkte einzuwählen.
  • Unsichere Ökosystem-Schnittstellen: Die Erforschung von komplexen IoT-Umgebungen zeigte exponierte Automatisierungsplattformen, die die Funktionen mehrerer Geräte verketten. Der exponierte Automatisierungsserver enthielt wichtige Informationen wie Geostandort des Haushalts und fest codierte Passwörter.
  • Unsichere Netzwerkdienste: Ein Forschungsprojekt von Trend Micro aus dem Jahr 2017 widmete sich der Sicherheit von Sonos smarten Lautsprechern. Die Studie zeigte, wie einfach offene Ports das Gerät für jedermann im Internet zugänglich machen.

Nutzer sollten diese allgemein vorhandenen Schwachstellen ernst nehmen und die nötigen Vorsichtsmassnahmen gegen Exploits treffen. Weitere Einzelheiten zu IoT-bezogenen Angriffen sowie Sicherheitsempfehlungen umfasst die IoT-Ressource-Seite von Trend Micro.

Verantwortlichkeiten bei Sicherheit von IoT-Geräten

Das Potential unvorhersehbarer kaskadenartiger Auswirkungen von Schwachstellen und mangelnder Sicherheit im IoT beeinflusst in hohem Masse die allgemeine Sicherheit des Internets. Die Gewährleistung der Sicherheit dieser Geräte liegt in der gemeinsamen Verantwortung aller Beteiligten.

Die Hersteller müssen bekannte Schwachstellen in Nachfolgeprodukten beheben, Patches für bestehende Produkte bereitstellen und das Ende des Supports für ältere Produkte melden. Hersteller von IoT-Geräten müssen zudem die Sicherheit bereits in der Entwurfsphase berücksichtigen und dann Penetrationstests durchführen, um sicherzustellen, dass es keine unvorhergesehenen Lücken in einem System und Gerät in der Produktion gibt. Und Unternehmen sollten auch über ein System verfügen, über das sie Schwachstellen-Reports von Dritten zu ihren eingesetzten Produkten empfangen können.

Die Benutzer müssen mehr Wissen über die Sicherheitsrisiken beim Anschluss dieser Geräte und über ihre Aufgabe bei der Sicherung dieser Geräte erlangen. Die Risiken lassen sich unter anderem durch die Änderung der Standardpasswörter, die Aktualisierung der Firmware und die Wahl sicherer Einstellungen mindern.

Eine vollständige und mehrschichtige Verteidigung erhalten Anwender mit Hilfe von Lösungen wie Trend Micro™ Security und Trend Micro™ Internet Security, die effiziente Sicherheitsfunktionen gegen Bedrohungen IoT-Geräte bieten, denn sie können Malware auf den Endpunkten erkennen. Vernetzte Geräte lassen sich über Lösungen schützen wie Trend Micro™ Home Network Security und Trend Micro Smart Home Network™ (SHN), die den Internet-Verkehr zwischen Router und allen vernetzten Geräten überprüfen können. Die Netzwerk-Appliance Trend Micro™ Deep Discovery™ Inspector bietet Monitoring aller Ports und Netzwerkprotokolle auf fortgeschrittene Bedrohungen und kann somit Unternehmen vor gezielten Angriffen schützen.

Sicherheit für die 4 Cs von Cloud-nativen Systemen: Cloud, Cluster, Container und Code, Teil 2

Originalbeitrag von Magno Logan, Threat Researcher

Cloud-native Softwareentwicklung baut auf quelloffene und proprietäre Software, um Anwendungen wie Microservices bereitzustellen, die in einzelnen Containern in isoliert ausführbare Prozesse verpackt sind. Da Unternehmen mehrere Container auf mehreren Hosts laufen lassen, setzen sie Orchestrierungssysteme wie etwa Kurbernetes ein, die über CI/CD-Tools mit DevOps-Methodologien bereitgestellt und verwaltet werden. Wie bei jeder Technologie, die unterschiedliche, miteinander verbundene Tools und Plattformen nutzt, spielt auch beim Cloud-nativen Computing Sicherheit eine entscheidende Rolle. Cloud-native Sicherheit unterteilt die Strategie in vier unterschiedliche Schichten. Nach der Darstellung der Sicherheitsproblematik für die Cloud an sich und für die Cluster (Teil 1) stellt dieser 2. Teil die Sicherheit für Container und Code in den Vordergrund.

Kubernetes nennt dies „The 4Cs of Cloud-native Security“.

Bild 1. Die 4 Cs der Cloud-nativen Sicherheit

Wichtig ist, Sicherheitskontrollen in jeder Schicht anzuwenden, denn jeder Layer liefert eine eigene Angriffsoberfläche und wird nicht zwangsläufig durch andere Layer geschützt. So wird etwa eine unsichere Webanwendung bei einem Angriff über SQL Injection nicht durch äussere Schichten (siehe Bild 1) dagegen geschützt, wenn keine spezielle Sicherheitssoftware vorhanden ist. Sicherheitsverantwortliche müssen jedes mögliche Szenario mit einbeziehen und Systeme auf jede Art schützen. Weitere detaillierte Empfehlungen für die sichere Container-Orchestrierung bietet der Blogeintrag zur Sicherheit von Kubernetes Container-Orchestrierung.

Container-Sicherheit

Für den Betrieb von Containern im Cluster bedarf es der Container Runtime Engines (CREs). Eine der bekanntesten ist Docker, doch Kubernetes unterstützt auch andere wie containerd oder CRI-O. In puncto Sicherheit müssen Unternehmen für diese Schicht drei wichtige Fragen klären:

  • Wie sicher sind die Images? Hier müssen Verantwortliche sicherstellen, dass die Container auf aktuellem Stand und frei von Schwachstellen, die missbraucht werden könnten, sind. Nicht nur das Basis-Image muss abgesichert sein, sondern auch die in den Containern laufenden Anwendungen müssen gescannt und verifiziert sein. Dafür gibt es einige quelloffene Tools, doch nicht alle können Schwachstellen ausserhalb der Betriebssystempakete erkennen. Dafür sollten Anwender auf Lösungen setzen, die auch Anwendungen abdecken, so etwa Deep Security™ Smart Check.
  • Sind die Container vertrauenswürdig? Wurden die Container, die im System laufen, aus den Images in der eigenen Registry erstellt? Wie lässt sich dies gewährleisten? Antworten bieten Image-Signiertools wie TUF oder Notary, mit denen die Images signiert werden können und somit ein vertrauenswürdiges System für die Inhalte der Container erstellt werden kann.
  • Laufen sie mit den geeigneten Privilegien? Hier greift das Prinzip der geringsten Privilegien. Es sollten lediglich Container laufen, wo die Nutzer nur die für ihre Aufgaben erforderlichen Betriebssystemprivilegien haben.

Ein umfassender Leitfaden zu einem höheren Schutz für Container zeigt auch die möglichen Gefahren in jeder Phase der Entwicklungs-Pipeline.

Code-Sicherheit

Hierbei geht es um Anwendungssicherheit. Es ist die Schicht, über die Unternehmen die beste Kontrolle haben. Der Code der Anwendungen stellt zusammen mit den zugehörigen Datenbanken das Kernstück der Systeme dar. Sie sind üblicherweise im Internet zugänglich und werden daher von Angreifern ins Visier genommen, wenn alle anderen Komponenten gut gesichert sind.

Deshalb müssen Unternehmen in erster Linie sicherstellen, dass jegliche Kommunikation TLS-verschlüsselt abläuft, auch wenn es sich um interne Services handelt, wie Load Balancer, Anwendungsserver und Datenbanken. Im Fall eines Orchestrierungstools wie Kubernetes lassen sich dafür Services wie Istio oder Linkerd heranziehen.

Die Angriffsfläche der Systeme kann erheblich verkleinert werden, wenn exponierte Dienste, Ports und API-Endpunkte reduziert und überwacht werden. Hier sollten auch Container Basis-Images und Systeme, auf denen die Cluster laufen, bedacht werden.

Es lassen sich verschiedene Code-Sicherheitsüberprüfungen zur Pipeline hinzufügen, um zu gewährleisten, dass der Code gesichert ist. Hier sind einige davon:

  • Statische Sicherheitsanalyse von Anwendungen. Man spricht auch von „Sicherheitsüberprüfung des Codes“ oder von „Code Auditing“. Die Methode gilt als einer der besten und schnellsten Wege, um Sicherheitsprobleme im Code zu entdecken. Unabhängig von der verwendeten Sprache sollte mindestens ein statisches Analysetool in die Pipeline integriert sein, das bei jedem Commit von neuem Code auf unsichere Kodierungspraktiken prüft. Die Open Web Application Security Project (OWASP) Foundation erstellt eine Liste mit quelloffenen und auch kommerziellen Tools für die Analyse von Quellcode und/oder kompiliertem Code.
  • Dynamische Sicherheitsanalyse von Anwendungen. Obwohl eine dynamische Analyse nur dann durchgeführt werden kann, wenn es eine laufende Anwendung gibt, gegen die getestet wird, ist es ratsam, automatisierte Scans und Checks durchzuführen, um bekannte Angriffe wie SQL Injection, Cross-Site Scripting (XSS) und Cross-Site Request Forgery (CSRF) aufzuspüren. Diese Tools testen auch die Widerstandsfähigkeit der Anwendung, Container und Cluster, wenn auf diese eine Reihe unerwarteter Belastungen und fehlerhafter Anfragen zukommt. OWASP hat ein dynamisches Analysetool, OWASP Zed Attack Proxy (ZAP), das Unternehmen automatisiert und in die eigene Pipeline einfügen können.
  • Analyse der Software-Komposition. 70% bis 90% aller Cloud-nativen Anwendungen umfassen Abhängigkeiten von Bibliotheken und Drittanbietern. Es geht um Codeteile, die wahrscheinlich von jemand ausserhalb des Unternehmens verfasst wurden, und die in den unternehmenseigenen Produktionssystemen laufen. Diese Codes werden im Allgemeinen während der statischen Analyse nicht überprüft. Dafür können Tools wie der OWASP Abhängigkeitscheck genutzt werden, um nach veralteten oder angreifbaren Bibliotheken im Code zu suchen. Snyk wiederum bietet kostenlos Drittanbieterüberprüfung für quelloffene Projekte.

Fazit

Die vier Schichten von Cloud-nativen Systemen sind für die Sicherheit von Anwendungen von entscheidender Bedeutung – und wenn auch nur eine von ihnen Angreifern ausgesetzt ist, kann das gesamte System kompromittiert werden.

Cloud-Sicherheitslösungen von Trend Micro

Cloud-spezifische Sicherheitslösungen wie die Trend Micro™ Hybrid Cloud Security können zum Schutz von Cloud-nativen Systemen und ihren verschiedenen Schichten beitragen. Unterstützt wird sie von Trend Micro Cloud One™ , einer Sicherheitsdienste-Plattform für Cloud-Entwickler. Sie bietet automatisierten Schutz für die CI/CD-Pipeline und Anwendungen. Sie trägt auch dazu bei, Sicherheitsprobleme früher zu erkennen und zu lösen und die Lieferzeit für die DevOps-Teams zu verkürzen. Die Plattform umfasst:

Sicherheit für die 4 Cs von Cloud-nativen Systemen: Cloud, Cluster, Container und Code, Teil 1

Originalbeitrag von Magno Logan, Threat Researcher

Cloud-native Softwareentwicklung dient der Erstellung und dem Ablauf von skalierbaren Anwendungen in der Cloud – seien es öffentliche, private oder hybride Umgebungen. Der Ansatz baut auf quelloffene und proprietäre Software, um Anwendungen wie Microservices bereitzustellen, die in einzelnen Containern in isoliert ausführbare Prozesse verpackt sind. Da Unternehmen mehrere Container auf mehreren Hosts laufen lassen, setzen sie Orchestrierungssysteme wie etwa Kurbernetes ein, die über CI/CD-Tools mit DevOps-Methodologien bereitgestellt und verwaltet werden. Mithilfe von Cloud-nativen Technologien können Unternehmen das Meiste aus ihren Cloud-Ressourcen herausholen mit weniger Overhead, aber schnelleren Antwortzeiten und einfacherer Verwaltung. Wie bei jeder Technologie, die unterschiedliche, miteinander verbundene Tools und Plattformen nutzt, spielt auch beim Cloud-nativen Computing Sicherheit eine entscheidende Rolle. Es gibt heutzutage kein komplexes Softwaresystem, das vor Hacking gefeit ist und zu 100% undurchdringlich ist. Deshalb stellt das Konzept einer tiefgreifenden Verteidigung ein Muss für die Sicherheit dar.

Die tiefgreifende Verteidigung oder Defense-in-Depth beruht auf mehreren Sicherheitsschichten mit Barrieren über verschiedene Bereiche im Unternehmen hinweg. Damit soll der Schutz gewährleistet sein, auch wenn eine Kontrollschicht versagt. Cloud-native Sicherheit setzt ebenfalls auf dieses Konzept und unterteilt die Strategie für Cloud-native Systeme in vier unterschiedliche Schichten. Kubernetes nennt dies „The 4Cs of Cloud-native Security“.

Bild 1. Die 4 Cs der Cloud-nativen Sicherheit

Wichtig ist, Sicherheitskontrollen in jeder Schicht anzuwenden, denn jeder Layer liefert eine eigene Angriffsoberfläche und wird nicht zwangsläufig durch andere Layer geschützt. So wird etwa eine unsichere Webanwendung bei einem Angriff über SQL Injection nicht durch äussere Schichten (siehe Bild 1) dagegen geschützt, wenn keine spezielle Sicherheitssoftware vorhanden ist. Sicherheitsverantwortliche müssen jedes mögliche Szenario mit einbeziehen und Systeme auf jede Art schützen.

Cloud-Sicherheit

Der Cloud Layer umfasst die Infrastruktur, auf der Server betrieben werden. Beim Aufsetzen eines Servers bei einem Cloud Service Provider (CSP) sind viele unterschiedliche Dienste beteiligt. Und obwohl die Hauptverantwortung für die Sicherung solcher Dienste (z.B. Betriebssystem, Plattformverwaltung und Netzwerkkonfiguration) bei den CSPs liegt, ist der Kunde nach wie vor für die Überprüfung und Konfiguration dieser Dienste sowie für die Überwachung und Sicherung seiner Daten verantwortlich. Dieses Modell der geteilten Verantwortung ist wichtig, wenn ein Unternehmen Ressourcen und Dienste in die Cloud verlagert.

Folgende sind die häufigsten Probleme, die in den heutigen Cloud-Systemen auftreten:

Unternehmen können diese Art von Problemen vermeiden, wenn sie die Empfehlungen ihrer Cloud Provider befolgen und regelmässige Audits durchführen, um sicherzustellen, dass alle Konfigurationen ihre Richtigkeit haben, bevor sie ins Internet gehen.

Der Einsatz von Infrastructure-as-Code (IaC)-Practices stellt eine effiziente Massnahme dar, die gewährleistet, dass Systeme richtig erstellt und ihre Konfiguration korrekt ist. IaC verwendet Code, um die sachgerechte Bereitstellung von IT-Architekturen zu automatisieren. Damit lässt sich die manuelle Bereitstellung durch DevOps-Ingenieure eliminieren, wodurch Versehen und menschliche Fehler minimiert werden, solange bewährte Verfahren befolgt werden. Tools wie Terraform, Ansible und CloudFormation bieten Unterstützung beim Festlegen der Grundeinstellungen für die Infrastruktur, einschließlich derer für die Sicherheit. Auch helfen sie sicherzustellen, dass die Einstellungen unverändert bleiben, es sei denn, jemand genehmigt und stellt den notwendigen Code zur Verfügung, um sie zu ändern.

Der Einsatz von IaC Practices ist mittlerweile die Norm beim Erstellen und dem Aufbau von Cloud-Umgebungen. Es ist tatsächlich nicht mehr nötig, Server manuell einzurichten und zu konfigurieren – Automatisierung ist der Schlüssel zur Sicherung von Cloud-Architekturen.

Wichtig ist es zudem, den Sicherheitsempfehlungen des Cloud Service Providers zu folgen. Einige der bekanntesten Best Practices von CSP:

Zu den Lösungen, die Ein- und Übersichten in Cloud-Architekturen bieten sowie automatisierte Sicherheits- und Compliance-Checks, gehört Trend Micro™ Cloud One – Conformity.

Cluster-Sicherheit

Beim Thema Cluster Security geht es zumeist um Kubernetes, denn dies ist das derzeit am häufigsten eingesetzte Container Orchestrierungs-Tool. Doch die Sicherheitsprinzipien gelten genauso auch für andere Lösungen.

Es gibt drei Cluster-Hauptelemente, um die sich Unternehmen kümmern müssen:

  • Cluster-Komponenten: Dabei geht es um den Schutz der Komponenten, die das Cluster bilden oder bei Kubernetes den Master Node. An erster Stelle bei der Cluster-Sicherheit stehen Themen wie die Kontrolle des API-Server-Zugriffs und die Beschränkung des direkten Zugriffs auf etcd, den primären Datenspeicher von Kubernetes. Um ungewollten Zugang zu Datenspeichern zu vermeiden, sollten Administratoren den standardmässigen Zugriff verbieten und nur expliziten Verkehr zulassen. Kubernetes liefert ein ausführliches Dokument, das die Art und Weise wie Cluster vor unbeabsichtigtem oder bösartigem Zugriff zu schützen sind, beschreibt. Sofern ein Unternehmen nicht über ein großes Team verfügt und/oder strenge Compliance-Anforderungen zu erfüllen hat, empfiehlt sich die Nutzung von Cluster Managed Services wie Azure Kubernetes Service (AKS), Elastic Kubernetes Service (EKS) oder Google Kubernetes Engine (GKE).
  • Cluster Services. Hier geht es um die sachgemässe Konfiguration und die Zugangskontrolle zu den Services, die im Cluster laufen. Zur Absicherung dieser Dienste empfiehlt Kubernetes das Aufsetzen bestimmter Schutzmassnahmen wie Ressourcenmanagement und das Prinzip der geringsten Privilegien für den Ablauf der Services. Des Weiteren sollten geeignete Authentifizierung und Autorisierung für das Cluster vorhanden sein, Verschlüsselung für den Verkehr mit Transport Layer Security (TLS) sowie der Schutz für kritische Informationen. Weitere technische Details zur Sicherheit der Cluster-Services bietet das Center for Internet (CIS) Kubernetes Benchmark.
  • Cluster Networking. In diesem Bereich ist die richtige Zuweisung von Ports wichtig, um die Kommunikation zwischen Containern, Pods und Diensten zu erleichtern. Es muss sichergestellt sein, dass das Kubernetes-Netzwerkmodell mithilfe einer Container-Netzwerkschnittstelle (CNI), die es den Benutzern ermöglicht, den Pod-Verkehr einzuschränken, sicher implementiert wird.

Weitere detaillierte Empfehlungen für die sichere Container-Orchestrierung bietet der Blogeintrag zur Sicherheit von Kubernetes Container-Orchestrierung.

Im 2. Teil beschreiben wir, wie Container- und Code-Sicherheit – die nächsten 2C – aussehen sollte.

Report zeigt Cloud als eines der Hauptziele von Angriffen

Der gerade erschienene Data Breach Investigations Report“ (DBIR) von Verizon bietet seit nunmehr 12 Jahren interessante Einblicke in die aktuellen Trend in der Bedrohungslandschaft. Für den aktuellen Report wurden 32.000 „Vorfälle“ und fast 4.000 Diebstähle weltweit analysiert. Ganz allgemein fällt auf, dass 70% der Diebstähle im letzten Jahr von Tätern ausserhalb des Unternehmens begangen wurden – dies widerspricht der der weit verbreiteten Meinung, Innentäter seien die Hauptakteure. Weitere 22% wurden durch menschliche Fehler möglich. Zwei Haupttrends lassen sich aus dem Bericht herauslesen.

Zum einen steigt die Zahl der Cloud-Assets, die von Einbrüchen betroffen sind: In etwa einem Viertel (24%) dieser Vorfälle sind Bestandteile von Cloud-Systemen oder Services mit involviert. In den meisten Fällen (73%) wurde ein Email- oder Web-Anwendungsserver ins Visier genommen und bei 77% der Events nutzten die Angreifer vorher gestohlene Login-Informationen. Persönliche Daten sind immer häufiger betroffen, oder zumindest werden diese Diebstähle aufgrund gesetzlicher Bestimmungen öfter gemeldet. Bei 58% der Verstösse waren personenbezogene Daten beteiligt,  fast doppelt so viel wie letztes Jahr.

Diese große Beliebtheit von Phishing-Angriffen erklärt Verizon damit, dass Cyberkriminelle immer den schnellsten und einfachsten Weg für eine Kompromittierung wählen. Dies stimmt mit den Beobachtungen von Trend Micro überein. Der „Cloud App Security Report 2019“ zeigte einen jährlichen 35-prozentigen Anstieg der Credential Phishing-Versuche ab 2018.

86% der Übergriffe waren finanziell motiviert, wenngleich Spionage und fortgeschrittene Bedrohungen am meisten Aufsehen erregten. Der Credential-Diebstahl, Angriffe über Social Engineering (d.h. Phishing und Business Email Compromise) und Fehler verursachten die Mehrzahl der Einbrüche (67% oder mehr). Ransomware machte 27% der Malware-Vorfälle aus, und 18% der Unternehmen blockten mindestens eine Ransomware.

Auch erweitert sich die unternehmensweite Angriffsfläche, weil immer mehr Geschäftsprozesse und Daten in Cloud-Systeme migriert werden. Deshalb wird es für Unternehmen immer wichtiger, vertrauenswürdige Sicherheitspartner zu finden, die sie dabei unterstützen, den nativen Schutz zu verbessern, den Cloud Service Provider anbieten.

Zum anderen stellt der DBIR eine steigende Tendenz zu Cloud-basierten Datendiebstählen aufgrund von Fehlkonfigurationen fest. Der Bericht geht davon aus, dass 22 % der Einbrüche aufgrund von menschlichen Fehlern möglich waren, viele davon eben durch Konfigurationsprobleme. Typischerweise werden Cloud-Datenbanken oder Dateispeichersysteme infolge eines Fehlers eines Auftragnehmers oder Inhouse IT-Admins im Internet exponiert.

Auch dies ist ein Bereich, den Trend Micro bereits als Bedrohung für Unternehmen hervorgehoben hat. Tatsächlich identifiziert Trend Micro Cloud One – Conformity durchschnittlich 230 Millionen Fehlkonfigurationen täglich.

Der langfristige Trend geht in Richtung einer stärkeren Migration in die Cloud, einer höheren Abhängigkeit von Web-Anwendungen für das Arbeiten an Remote-Standorten und zu mehr Komplexität, da Unternehmen in hybride Systeme von mehreren Anbietern investieren. Das bedeutet ein potenziell höheres Cyberrisiko, das CISOs meistern müssen.

Sicherheitsempfehlungen

In erster Linie sind gerade Cloud-Verantwortliche gut beraten, ein tiefes Verständnis dafür zu entwickeln, wie ihre Unternehmen die Cloud nutzen, um die passenden Sicherheitsrichtlinien und -standards zusammen mit durchsetzungsfähigen Rollen und Verantwortlichkeiten festlegen zu können. Des Weiteren sind Schulungen und Awareness-Programme für Mitarbeiter wichtig. Zudem sollten Best Practices befolgt werden, so etwa die Anwendung von Multi-Faktor-Authentifizierung bei Mitarbeiterkonten, Richtlinien für den Zugang mit den geringsten Privilegien und mehr.

Sicherheitslösungen wie Cloud App Security verbessert den Built-in-Schutz in Office 365, G Suite und für Cloud Dateisharing-Dienste, weil die Lösung Malware und Phishing-Versuche blocken kann. Trend Micro Cloud One – Conformity wiederum liefert automatisierte Sicherheits- und Compliance-Prüfungen, um Fehler bei der Konfiguration zu vermeiden und Cloud Security Posture Management nach Best Practices zu ermöglichen.

Cloud-Sicherheit: Schlüsselkonzepte, Bedrohungen und Lösungen

Unternehmen sind gerade dabei, ihre digitale Transformation auf den Weg zu bringen. Dabei setzen sie auf Vielfalt der heutzutage verfügbaren Cloud-basierten Technologien. Für Chief Security Officer (CSO) und Cloud-IT-Teams kann sich die Verwaltung der Cloud-Computing-Sicherheit für eine bestimmte Installation zuweilen schwierig gestalten, und das gerade wegen der Benutzerfreundlichkeit, Flexibilität und Konfigurierbarkeit von Cloud-Diensten. Administratoren müssen ein Verständnis dafür entwickeln, wie ihre Unternehmen die Cloud nutzen, um die passenden Sicherheitsrichtlinien und -standards zusammen mit durchsetzungsfähigen Rollen und Verantwortlichkeiten festlegen zu können.

Herkömmliche netzwerkbasierte Sicherheitstechnologien und -mechanismen lassen sich nicht einfach nahtlos in die Cloud migrieren. Gleichzeitig aber sind die Sicherheitsprobleme, vor denen ein Netzwerkadministrator steht, meist gleich: Wie lässt sich ein unbefugter Zugriff auf das Netzwerk verhindern und Datenverluste vermeiden? Wie kann die Verfügbarkeit sichergestellt werden? Wie lässt sich die Kommunikation verschlüsseln oder Teilnehmer in der Cloud authentifizieren? Und schliesslich wie kann das Sicherheits-Team Bedrohungen leicht erkennen und Schwachstellen in  Anwendungen aufdecken?

Geteilte Verantwortlichkeiten

Eigentlich hat Amazon die Konzepte „Sicherheit der Cloud“ versus „Sicherheit in der Cloud“ eingeführt, um die gemeinsame Verantwortung von Anbietern und Kunden für die Sicherheit und Compliance in der Cloud zu klären. Anbieter sind hauptsächlich für den Schutz der Infrastruktur verantwortlich, in der alle in der Cloud angebotenen Services ausgeführt werden. Des Weiteren bestimmt eine gestaffelte Skala je nach dem gekauften Cloud-Service die direkten Verantwortlichkeiten des Kunden.

Praktisch bestimmen die verschiedenen Cloud Service-Modelle — Infrastructure as a Service (IaaS), Platform as a Service (PaaS) und Software as a Service (SaaS) – welche Komponenten (von der physischen Infrastruktur, die die Cloud hostet, bis zu den Daten, die in der Cloud erstellt, verarbeitet und gespeichert werden) in der Verantwortung des Betreibers und welche in der des Kunden liegen, und wer demzufolge für die Sicherheit zu sorgen hat.

In einem PaaS-Modell wie Google App Engine, Microsoft Azure PaaS oder Amazon Web Services Lambda, kaufen Entwickler die Ressourcen für das Erzeugen, Testen und Ablaufen von Software. Daher sind sie als Nutzer generell für Anwendungen und Daten verantwortlich, während der Anbieter für den Schutz der Container-Infrastruktur und des Betriebssystems sorgen muss – mit einem unterschiedlichen Mass an Verantwortung, je nach der erworbenen spezifischen Dienstleistung.

Bild 1. „Sicherheit der Cloud“ versus „Sicherheit in der Cloud“

Die Sicherheit der Cloud gehört zum Angebot des Cloud Providers. Dies wird durch vertragliche Vereinbarungen und Verpflichtungen, einschließlich Service-Level-Agreements (SLAs) zwischen dem Verkäufer und dem Kunden, sichergestellt. Leistungskennzahlen wie Betriebszeit oder Latenzzeit sowie Erwartungen hinsichtlich der Lösung eventuell auftretender Probleme, dokumentierter Sicherheitsfunktionen und unter Umständen sogar Strafen für mangelnde Leistung können in der Regel von beiden Parteien durch die Festlegung akzeptabler Standards gemanagt werden.

Die wichtigsten Herausforderungen für die Sicherheit

Unternehmen migrieren möglicherweise einige Bereiche in die Cloud, indem sie diese vollständig in der Cloud (auch bekannt als „cloud-nativ“) starten oder setzen ihre ausgereifte Cloud-basierte Sicherheitsstrategie um. Unabhängig davon, in welcher Phase sich ein Unternehmen auf seinem Weg in die Cloud befindet, sollten Cloud-Administratoren in der Lage sein, Sicherheitsoperationen durchzuführen, wie z.B. das Management von Schwachstellen, die Identifizierung wichtiger Netzwerkvorfälle, Incident Response aufzusetzen sowie Bedrohungsinformationen zu sammeln und entsprechende  Maßnahmen festzulegen – und das alles unter Einhaltung der relevanten Industriestandards.

Verwalten der Komplexität

Cloud-Implementierungen greifen nicht auf dieselbe Sicherheitsinfrastruktur zu wie On-Premises-Netzwerke. Die Heterogenität der Dienste in der Cloud macht es schwierig, kohärente Sicherheitslösungen zu finden. Cloud-Administratoren müssen jederzeit versuchen, eine hybride Umgebung zu sichern. Die Komplexität der Aufgabe ergibt sich aus der Tatsache, dass die Risiken bei Cloud Computing je nach der spezifischen Cloud-Bereitstellungsstrategie variieren. Dies wiederum hängt von den spezifischen Bedürfnissen der Cloud-Benutzer und ihrer Risikobereitschaft bzw. der Höhe des Risikos ab, welches sie zu übernehmen bereit sind. Aus diesem Grund ist Risikobewertung wichtig, und zwar nicht lediglich gemäss der veröffentlichten Best Practices oder der Einhaltung von Vorschriften entsprechend. Compliance-Richtlinien dienen jedoch als Grundlage oder Rahmen, der dazu beitragen kann, die richtigen Fragen zu den Risiken zu stellen.

Übersicht erhalten

Infolge der Möglichkeit, Cloud-Dienste einfach zu abonnieren, geht der Wechsel innerhalb der Unternehmen immer schneller, und Kaufentscheidungen liegen plötzlich nicht mehr im Zuständigkeitsbereich der IT-Abteilung. Dennoch bleibt die IT-Abteilung weiterhin für die Sicherheit von Anwendungen, die mit Hilfe der Cloud entwickelt wurden, verantwortlich. Die Herausforderung besteht darin, wie sichergestellt werden kann, dass die IT-Abteilung jede Interaktion in der Cloud einsehen und sichern kann, und der Wechsel und Entwicklung trotzdem effizient bleiben.

Sicherheitsrisiken und Bedrohungen in der Cloud

Die Trend Micro-Untersuchung der bekanntesten Sicherheitsfallen in Cloud-Implementierungen ergab, dass Fehlkonfigurationen die größte Schwäche für Cloud-Sicherheit darstellen. Das bedeutet, dass Cloud-Anwender beim Aufsetzen ihrer Cloud-Instanzen häufig wichtige Einstellungen übersehen oder diese unsicher ändern.

Bedrohungsakteure nutzen diese Fehlkonfiguration für verschiedene bösartige Aktivitäten aus – von allgemeinen bis zu sehr gezielten Angriffen auf eine bestimmte Organisation als Sprungbrett in ein anderes Netzwerk. Auch über gestohlene Login-Daten, bösartige Container und Schwachstellen in einem der Software Stacks können sich Cyberkriminelle Zutritt zu Cloud-Implementierungen verschaffen. Zu den Cloud-basierten Angriffen auf Unternehmen zählen auch folgende:

  • Cryptojacking: Bedrohungsakteure stehlen Unternehmen Cloud-Computing-Ressourcen, um nicht autorisiertes Kryptowährungs-Mining zu betreiben. Für den aufkommenden Netzwerkverkehr wird das Unternehmen zur Kasse gebeten.
  • E-Skimming: Dabei verschaffen sich Kriminelle Zugang zu den Webanwendungen eines Unternehmens, um bösartigen Code einzuschleusen, der finanzielle Informationen der Site-Besucher sammelt und damit schliesslich dem Ruf des Unternehmens schadet.
  • Nicht autorisierter Zugang: Dies führt zu Datenveränderungen, -diebstahl oder -exfiltrierung. Der Zweck dieser Aktionen kann der Diebstahl von Betriebsgeheimnissen sein oder Zugang zu Kundendatenbanken, um die dort geklauten Informationen im Untergrund zu verkaufen.

Die zu sichernden Bereiche in der Cloud

Bei der Festlegung der Anforderungen an ihre Cloud, sollten Cloud Builder bereits von Anfang an Sicherheit mit berücksichtigen. So lassen sich die Bedrohungen und Risiken vermeiden. Durch die Absicherung jedes der folgenden Bereiche, sofern relevant, können IT-Teams aktuelle und zukünftige Cloud-Implementierungen sicher steuern.

Netzwerk (Traffic Inspection, Virtual Patching)

Ein kritischer Teil des Sicherheitspuzzles, die Netzwerkverkehrs-Inspektion, kann die Verteidigungslinie gegen Zero-Day-Angriffe und Exploits für bekannte Schwachstellen bilden sowie über virtuelles Patching schützen. Eine Firewall in der Cloud unterscheidet sich nur geringfügig von einer herkömmlichen, da die Hauptherausforderung bei der Ausführung darin besteht, die Firewall so zu implementieren, dass Netzwerkverbindungen oder vorhandene Anwendungen nicht unterbrochen werden, unabhängig davon, ob es sich um eine virtuelle private Cloud oder ein Cloud-Netzwerk handelt.

Bild 2. Netzwerksicherheit in der Cloud muss den gesamten Unternehmensverkehr „sehen“ können, unabhängig von dessen Quelle.

Cloud-Instanz (Workload-Sicherheit zur Laufzeit)

Die Begriffe in der Sicherheit und die Paradigmen ändern sich, um dem Verständnis der zu schützenden Komponenten Rechnung zu tragen. In der Cloud bezeichnet das Konzept der Workload eine Einheit von Fähigkeiten oder das Arbeitsaufkommen, das in einer Cloud-Instanz ausgeführt wird. Der Schutz von Workloads vor Exploits, Malware und unbefugten Änderungen stellt eine Herausforderung dar, da sie in Server-, Cloud- oder Container-Umgebungen ausgeführt werden. Workloads werden nach Bedarf dynamisch gestartet, aber jede Instanz sollte sowohl für den Cloud-Administrator sichtbar sein als auch durch eine Sicherheitsrichtlinie geregelt werden.

Bild 3. Workloads sollten auf Bedrohungen überwacht werden, unabhängig von ihrer Art oder dem Ursprung.

DevOps (Container-Sicherheit)

Der Container hat sich in den letzten Jahren zur zentralen Software-Einheit in Cloud-Services entwickelt. Durch die Verwendung von Containern wird sichergestellt, dass Software unabhängig von der tatsächlichen Computing-Umgebung zuverlässig ablaufen kann. Deren Replikation kann kompliziert werden, wenn beispielsweise bestimmte Codes, Werkzeuge, Systembibliotheken oder sogar Softwareversionen auf eine bestimmte Art und Weise da sein müssen.

Bild 4. Container bestehen aus verschiedenen Code Stacks und Komponenten und sollten nach Malware und Schwachstellen gescannt werden.

Insbesondere für Entwickler und Operations-Teams wird die Integration der Sicherheit während der Softwareentwicklung immer wichtiger, da zunehmend Cloud-first App-Entwicklung eingesetzt wird. Das bedeutet, dass Container auf Malware, Schwachstellen (auch in Softwareabhängigkeiten), Geheimnisse oder Schlüssel und sogar auf Compliance-Verletzungen gescannt werden müssen. Je früher diese Sicherheitsüberprüfungen während des Builds stattfinden, — am besten im Continuous-Integration-and-Continuous-Deployment-Workflow (CI/CD) — desto besser.

Applikationen (Serverlos, APIs, Web Apps)

Auf einigen serverlosen oder Container-Plattformen lässt sich traditionelle Sicherheit nicht einsetzen. Dennoch müssen einfache und komplexe Anwendungen selbst genauso gut gesichert werden wie die anderen Bereiche. Für viele Unternehmen stellt die schnelle und effiziente Programmierung und Bereitstellung neuer Anwendungen einen wichtigen Treiber für ihren Weg in die Cloud dar. Aber diese Anwendungen sind auch möglicher Eintrittspunkt für Laufzeitbedrohungen wie das Einschleusen von Code, automatisierte Angriffe und Befehlsausführung aus der Ferne. Finden Angriffe statt, so müssen Cloud-Administratoren auf die Details zugreifen können.

Dateispeicher

Unternehmen betrachten die Cloud hauptsächlich oder teilweise als Möglichkeit, Storage von den On-Premise-Servern dahin auszulagern. Cloud-Speicher für Dateien oder Objekte können zur Quelle für Infektionen werden, wenn aus irgendeinem Grund eine bekannte bösartige Datei hochgeladen wurde. Deshalb sollte Scanning für jede Art von Datei, unabhängig von deren Grösse, verfügbar sein und zwar idealerweise bevor sie gespeichert wird. Nur so lässt sich das Risiko minimieren, dass andere Nutzer auf eine bösartige Datei zugreifen und sie ausführen können.

Compliance und Governance

Datenschutzregularien wie die europäische Datenschutz-Grundverordnung (DSGVO), Industriestandards wie der Payment Card Industry Data Security Standard (PCI-DSS) und Gesetze wie Health Insurance Portability and Accountability Act (HIPAA) haben direkte Auswirkungen auf Unternehmen, die Daten vor allem in der Cloud verarbeiten und speichern. Cloud-Administratoren müssen die Compliance-Anforderungen mit den Vorteilen der Agilität der Cloud abgleichen. Dabei muss Sicherheitstechnologie Unternehmen die Gewissheit geben, dass ihre Installationen den besten Sicherheitspraktiken entsprechen; andernfalls können die Geldstrafen, die sich aus unbeabsichtigten Verstössen ergeben können, die Kosteneinsparungen leicht zunichtemachen.

Cloud-Sicherheitstechnologien

Bei so vielen „beweglichen“ Teilen muss ein Unternehmen, das über eine Cloud-Sicherheitsstrategie nachdenkt, darauf achten, die notwendigen Sicherheitstechnologien zu straffen, vom Schutz vor Malware und Intrusion Prevention bis hin zu Schwachstellenmanagement und Endpoint Detection and Response. Die Gesamtsicherheitslösung muss die Anzahl der Tools, Dashboards und Fenster, die als Grundlage für die IT-Analyse dienen, klein halten. Gleichzeitig muss sie in der Lage sein, die abstrakten Netzwerkgrenzen des ganzen Cloud-Betriebs des Unternehmens überzeugend zu visualisieren — unabhängig davon, ob eine Aktivität, wie z.B. die On-the-Fly-Tool-Entwicklung durch einen der Entwickler, von der IT bewilligt wurde oder nicht.

Trend MicroTM Hybrid Cloud Security kann beispielsweise DevOps-Teams dabei unterstützen, sicher zu entwickeln, schnell zu liefern und überall auszuführen. Die Lösung bietet funktionsstarke, schlanke, automatisierte Sicherheit innerhalb der DevOps Pipeline und liefert mehrere XGenTM Threat Defense-Techniken für den Schutz von physischen, virtuellen und Cloud-Workloads zur Laufzeit. Sie wird von der Cloud OneTM Platform unterstützt, die Unternehmen eine einheitliche Übersicht über die hybriden Cloud-Umgebungen liefert, sowie Sicherheit in Echtzeit durch Netzwerksicherheit, Workload-Sicherheit, Container-Sicherheit, Anwendungssicherheit, File Storage Security sowie Conformity-Dienste.

Unternehmen, die Security as Software für Workloads, Container Images sowie Datei- und Objektspeicher zur Laufzeit benötigen bietet Deep SecurityTM und Deep Security Smart Check Scans für Workloads und Container Images nach Malware und Schwachstellen während der Entwicklung-Pipeline.

Massive Credential Phishing-Angriffe auf Home User

Der Wert eines Passworts liegt darin, einem User Zugang zu wichtigen Informationen und jeder Menge IT Diensten zu eröffnen. Jeder weiss das und natürlich auch Cyberkriminelle. Somit ist es wenig verwunderlich, dass der Diebstahl von Login-Daten, also „Credentials“, eines der Hauptthemen ist, mit denen sich die Akteure beschäftigen. Jetzt aber, wo die Zahl derer, die im Home Office arbeiten, sprunghaft gestiegen ist, haben die „Credential Phisher“ Hochkonjunktur. Nutzer können sich am besten dagegen wehren, wenn sie verstehen, wie ein solcher Angriff abläuft.

Bild 1. Top 10 Länder, in denen User mit Credential Phishing Angriffen mit Bezug auf Outlook oder Office 365 angegriffen wurden (Quelle Trend Micro)

Vorgehensweise

Der Erfolg eines Credential Phishing-Angriffs steht und fällt mit der Fertigkeit des Angreifers, sein Opfer davon zu überzeugen, ihm sein Passwort freiwillig zu übergeben, und – das ist wichtig – das Opfer darf nicht misstrauisch werden. Denn ein Passwort ist im Zweifel binnen Sekunden geändert. Ein Täter benötigt etwas, eine Seite oder ein Formular, wo User Passwörter eingeben können und ein Mittel, das keinen Argwohn weckt, wenn dies nicht sofort klappt.

Ein beliebtes Ziel sind deshalb vor allem Mail-Clients. Während der Mitarbeiter im Büro einfach nur Outlook öffnet, greift er speziell im Home Office auch mit Vorliebe auf die Webvarianten über den Browser zu und muss sich, um auf seinen Account zu kommen, entsprechend authentifizieren. Damit aber ist die erste Notwendigkeit erfüllt. Der Angreifer muss seinem Opfer lediglich eine Fake Web Client-Seite vorgeben – eine klassische Phishing Aufgabe.

Bild 2. Fake Microsoft Login-Seite

Die Sache hat allerdings einen Haken: Die „klassische“ Angriffs-Mail erhält ein Opfer nur bei aktivem Mail Client. Wie erreicht ein Angreifer also sein Opfer, denn niemand würde den wichtigen Link anklicken, um dann erneut seinen Mail Client aufzumachen …

Hier bedient sich der Angreifer eines „Workarounds“. Die Mail bewirbt offiziell die neueste und/oder interessanteste Nachricht eines News-Dienstes. Klickt der User den Link an, wird er auf genau diese Seite weitergeleitet und erhält dort auch die erwartete Information. Gleichzeitig wird allerdings eine zweite Seite geöffnet, die eigentliche Phishing-Seite mit einem Mail Client-Login und dem Hinweis, dass die aktuelle/letzte Session abgelaufen ist. Geht das Opfer nach einer Weile – die Nachricht zu lesen hat vermutlich Zeit gekostet – auf seinen Mail Client und gibt sein Passwort erneut ein, so erscheint die Nachricht, dass entweder Username oder Passwort falsch waren. Es erfolgt eine Umleitung zurück auf die Original Web Client-Seite. Nach erneuter Eingabe des Passworts erhält er auch seinen gewohnten Zugriff auf seine Mails. Die Episode ist bald vergessen. Timeouts von Webseiten sind jedem vertraut und jeder hat sich schon einmal bei der Passworteingabe vertippt.

Aktualität

Das genannte Beispiel gibt es in zahlreichen Facetten. Natürlich ist Office365 dabei aber auch andere Applikationen speziell Online Meeting Plattformen wie Zoom oder Webex stehen im Fokus. Die Methode selbst wurde ursprünglich von der politisch motivierten Gruppe Pawnstorm (APT28, Fancy Bear) genutzt, um Angriffe auf höchste politische Kreise zu launchen. So steht Pawnstorm für die Angriffe auf die Demokratische Partei (2016), den Bundestag (2015/17) sowie eine Reihe weiterer politischer Angriffe.

Prinzipien für die Cloud Migration – das „Was“ bei der Sicherheit

Originalbeitrag von Jason Dablow

Analysten gehen davon aus, dass mehr als 75 Prozent der mittleren und großen Unternehmen bis 2021 eine Workload in die Cloud auslagern werden. Der Erfolg einer solchen Migration hängt von vielen Faktoren ab — nicht zuletzt von den umgesetzten Sicherheitskonzepten für diese „neue“ Welt: Nach der Verteilung der Verantwortlichkeiten für Cloud-Security stellt der Blogeintrag die prinzipiellen Bereiche dar, die zur Sicherheit gehören und bereits vor der Inbetriebnahme von Workloads abgedeckt werden müssen.

Als Grundlage für die Ausführungen dient der Grundpfeiler „Security“ des Well-Architected Framework von AWS Amazon. Hier werden die Sicherheitskonzepte für ein Cloud-Design dargestellt.

Bild. Die fünf Grundpfeiler des Well-Architected Framework von AWS

Das Sicherheits-Framework umfasst sieben Prinzipien:

  • Eine starke Identitätsgrundlage aufbauen
  • Nachvollziehbarkeit ermöglichen
  • Sicherheit in allen Schichten anwenden
  • Automatisieren von Best Practices für die Sicherheit
  • Schutz für Daten In-Transit und At-Rest
  • Personen von Daten fernhalten
  • Auf Sicherheitsvorfälle vorbereitet sein

Eine Reihe dieser Prinzipien lässt sich mit Hilfe nativer Cloud-Services umsetzen, die auch am einfachsten zu implementieren sind. Das Framework liefert aber keine Anregungen dazu, wie diese Services aufzusetzen oder zu konfigurieren sind. So mag das Framework Multifaktor-Authentifizierung als erforderlichen Schritt für die Identity und Access Management-Policy nennen, doch ist dies nicht standardmäßig aktiviert. Das Gleiche gilt für Dateiobjekt-Verschlüsselung. Sie kann eingesetzt werden, ist aber nicht unbedingt bereits aktiviert.

Hilfe bietet hier eine Trend Micro-eigene Wissensdatenbank mit Hunderten von Cloud-Regeln, die auf das Well-Architected Framework (und andere) abgestimmt sind. Zur Multifaktor-Authentifizierung etwa gibt es dort einen Artikel, der die vier „R“ beschreibt: Risiko, Reason (umfasst das Was der Regel), Rationale (umfasst das Warum) und Referenzen dazu, warum Multifaktor-Authentifizierung (MFA) eine Sicherheits-Best Practices ist. Weitere Details zu diesem Beispiel enthält der Originalbeitrag.